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Chapter 8
Survey Adjustments for
Conventional Surveys

8-1. General

The adjustment of survey and photogrammetric data is a
critical component in the determination of reliable coordi-
nates, directions, distances, and elevation data. The
adjustment technique and the analysis of the estimated
parameters should be given the same priority as the data
collection and recording procedures. An adjustment is a
method of dealing with redundant data. Redundancy can
be considered excess information. If the redundancy of a
system is zero, the system of observations would not
warrant an adjustment. For example, if a surveyor meas-
ured the distance from two known survey points to an
unknown location (range - range intersection), the two
distances from the known points would uniquely deter-
mine the two-dimensional location of the unknown point.
In this example there is no extra or redundant data, there-
fore, an adjustment would not be warranted.

a. Survey computations, whether made on a local
system or a standardized accepted system (e.g., SPCS),
are for all intents and purposes identical. The adjustment
of raw survey data is treated as independent observations
and adjusted as part of a total network. A variety of
methods may be used to adjust the survey data, including
compass (or Bowditch) rule, transit rule, the Crandall
Method, and the method of least squares. This chapter
describes some of the methods used to perform horizontal
and vertical adjustments and provides guidance in evaluat-
ing the adequacy and accuracy of the adjustment results.

b. Differential carrier phase GPS survey observa-
tions are adjusted no differently than conventional sur-
veys. Each three-dimensional GPS baseline vector is
treated as a separate distance observation and adjusted as
part of a trilateration network. A variety of the tech-
niques developed in this chapter can be used to adjust
observed GPS baselines to fit existing control. However,
they are usually adjusted by least squares. Refer to
EM 1110-1-1003 for further guidance on GPS baseline
adjustment.

8-2. Adjustment Methods

An adjustment may involve a mean of observations, bal-
ancing of a traverse, and an adjustment by least squares.
This chapter will briefly address traverse balancing and

the concept of a weighted mean. The main scope of the
chapter will deal with the adjustment of data using the
method of least squares. The method of least squares is
the most prevalent adjustment technique utilized by com-
mercial software packages.

8-3. Traverse Adjustment (Balancing)

The method of traverse adjustment is widely used by the
land surveying and engineering communities. This
method of adjustment is easy to perform and provides
adequate results for many survey applications. The
method of traverse adjustment depends on the precision of
the directions as compared to the precision of the dis-
tances. The equations necessary for each adjustment
method are available in any elementary survey text.

a. Crandall rule. The Crandall rule is used when
the angular measurements (directions) have greater preci-
sion than the linear measurements (distances). This
method allows for the weighting of measurements and has
properties similar to the method of least squares adjust-
ment. Although the technique provides adequate results,
it is seldom utilized because of its complexity. Also, with
the advent of the personal computer, a traditional least
squares adjustment can be performed with little effort.

b. Transit rule. The transit rule is utilized when the
angular measurements are of greater precision than the
linear measurements. For example, if a surveyor was
using a transit or theodolite for angular measurements and
stadia for linear measurements, the transit rule adjustment
would be applicable. This method is rarely used because
modern distance measuring equipment (DME) and elec-
tronic theodolites provide distance and angular measure-
ments with equal precision.

c. Compass rule. The compass rule adjustment is
used when the angular and linear measurements are of
equal precision. This is the most widely used traverse
adjustment method. Since the angular and linear precision
are considered equivalent, the angular error is distributed
equally throughout the traverse. For example, the sum of
the interior angles of a five-sided traverse should equal
540o 00’ 00".0, but if the sum of the measured angles
equals 540o 01’ 00".0, a value of 12".0 must be subtracted
from each observed angle to balance the angles within
traverse. After balancing the angular error, the linear
error is computed by determining the sums of the north-
south latitudes and east-west departures. The misclosure
in latitude and departure is applied proportional to the
distance of each line in the traverse.
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d. Example compass rule adjustment.A four-sided
closed traverse was performed (Figure 8-1) using a
twenty-second (20") theodolite and a one-hundred-foot
(100’) steel tape. The linear and angular measurements
were considered of equal precision, therefore, the compass
rule was utilized to adjust the traverse. The observed and
adjusted angles, azimuths, latitudes, and departures are
listed in Table 8-1. The following four steps demonstrate
how a compass rule adjustment is performed for a loop
traverse.

Figure 8-1. Loop traverse

Step 1. The angular error (αe) of the polygon is com-
puted by differencing the measured (αm) and true (αt)
angular closure. The measured angular closure is the
summation of the interior or exterior horizontal angles in
the traverse. If interior angles were measured when per-
forming a loop traverse, the true angular closure equals:

αt = (n-2) * 180o

n = number of sides in the traverse

αt = true angular closure

If exterior angles were measured when performing a loop
traverse, the true (αt) angular closure would equal:

αt = (n+2) * 180o

n = number of sides in the traverse

αt = true angular closure

Angular Error

αe = (αm - αt)

αe = angular error

The angular error (αe) is divided by the number of sides
(n) in the traverse and is distributed equally to all of the
measured angles. If the angular error is negative, the
error is added to all the angles in the traverse. If the
angular error is positive, the error is subtracted from all of
the angles in the traverse. After the angular misclosure
has been distributed throughout the traverse, the summa-
tion of the interior or exterior angles should equal the true
angular closure (αt). The four-sided closed traverse in
Figure 8-1 and Table 8-1 has an angular error (αe) of four
arc seconds (4"). In this example, the angular error is
negative; therefore, to balance the angles within the tra-
verse, one arc second (1") must be added to each angle in
the traverse.

Step 2. The horizontal angles are converted to bear-
ings or azimuths. To compute the “true” bearing or azi-
muth of each line in the traverse, one known bearing or
azimuth must be available prior to the adjustment process.
If a known bearing or azimuth is not available, a “false”
bearing can be used to perform the adjustment process. If
a “false” bearing is utilized, the traverse will be oriented
relative to this bearing. The example in Figure 8-1 and
Table 8-1 has a known azimuth between stations 11
and 12. The azimuth for each line in the traverse was
computed by adding the back azimuth between stations
and the angle to the right. The back azimuth is computed
by adding or subtracting one-hundred and eighty degrees
(180o) from the forward azimuth. The angle right equals
the measured interior angle.

Back Azimuth

If the forward azimuth αab 180o

The backward azimuthαba = αab + 180o

If the forward azimuth αab 180o

The backward azimuthαba = αab - 180o
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Step 3. The latitude and departure for each course in
the traverse are computed using the bearing or azimuth
and distance of the line. If bearings are utilized, the
latitude and departure must be identified as negative or
positive. The latitude of a line increases south to north.
The departure of a course increases from west to east. In
the example from Figure 8-1, the line from station 13’ to
12 would have a positive latitude and departure. The line
from station 12 to 11 would have a positive latitude and
negative departure. When azimuths are utilized, the alge-
braic sign (+/-) of the latitude and departure is accounted
for in the trigonometric functions.

Latitude and Departure

∆Nm = cos(BRG) * lij

∆Em = sin(BRG) * lij

or

∆Nm = cos(α) * l ij

∆Em = sin(α) * l ij

where

∆Nm = measured latitude

∆Em = measured departure

BRG = bearing

α = azimuth

lij = distance between stations i and j

Step 4. The summation of the measured latitudes
(Σ∆Nm) and departures (Σ∆Em) represents the error in
northing and easting of the traverse. The northing and
easting error is distributed throughout the traverse propor-
tional to the distance of each line (lij) and the perimeter
distance of the traverse (D). The precision of the traverse
(P) is equal to the line of closure (ρ) divided by the per-
imeter distance of the traverse.

Latitude and Departure Error

δNe = (lij /D) * Σ∆Nm

δEe = (lij /D) * Σ∆Em

Traverse Precision

P = ρ/D

where

P = traverse precision

ρ = ( (Σ∆N)2 + (Σ∆E)2 )0.5 (line of closure)

D = Σ l i

Σ∆Nm = summation of the measured northings within
the traverse

Σ∆Em = summation of the measured eastings within
the traverse

Σ l i = summation of the distances within the traverse

lij = Distance from station i to station j.

The latitude (δNe) and departure (δEe) errors are added or
subtracted from the measured latitudes (∆Nm) and depar-
tures (∆Em). To obtain the adjusted latitudes (∆N) and
departures (∆E), the algebraic signs (+/-) of the latitude
(δNe) and departure (δEe) errors are reversed and the
errors are added to the measured latitudes (∆Nm) and
departures (∆Em) (Table 8-1).

Adjusted Latitudes and Departures

∆N = δNm +/- δNe

∆E = δEm +/- δEe

e. Error detection. Errors in a balanced traverse are
difficult to locate. Determining angular and linear errors
in a balanced traverse requires inspection of the traverse
plot and the line of closure (ρ). The perpendicular bisec-
tor of the line of closure (ρ) is utilized to find the angular
error. If an angular error exists within the traverse, the
perpendicular bisector of the line of closure will “point”
(Figure 8-2) to the possible station that contains the error.
The perpendicular bisector of the line of closure in Fig-
ure 8-2 represents a possible angular error in station A.
The line of closure (ρ) may parallel a line within the
traverse that may have a linear (distance) error (Fig-
ure 8-2). Figure 8-2 represents a possible distance error
between stations A and B. These techniques in identify-
ing angular and linear errors are effective when only one
error exists within the traverse.
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Figure 8-2. Error detection

8-4. Weighted Mean

The weighted mean (Xw) of a set of observations allows
the surveyor to estimate the mean and variance of a
parameter from a set of independent observations. The
weight (w) of an observation is proportional to the inverse
of the variance (σ2) of the observation.

Observational Weight

w ≈ 1/σ2

Weighted Mean

Xw = (X1w1+X2w2+X3w3+Xnwn)/(w1+w2+w3+wn )

Xw = weighted mean

X1, X2, Xn = independent observations

w1, w2, wn = observational weights

If the position of a hydrographic vessel was determined
by the two techniques Differential Global Positioning
System (DGPS) and range azimuth techniques, the con-
cept of the weighted mean can be utilized to determine
the most probable position (Table 8-2). The precision of
the weighted mean equals the inverse of the sum of the
observational weights.

σ2 = 1/ (w1 + w2 + ... + wn )

8-5. Least Squares Adjustment

The method of least squares is the procedure of adjusting
a set of observations that constitute an over-determined
model (redundancy 0). A least squares adjustment
relates the mathematical (functional model) and stochastic
(stochastic model) processes that influence or affect the
observations. Stochastic refers to the statistical nature of
observations or measurements. The least squares princi-
ple relies on the condition that the sum of the squares of
the residuals approaches a minimum.

vtwv = φ

v = observation residual

w = weight of observation

φ = minimized criteria

The residuals (v) are the corrections to the observations.
The final adjusted observations equal the observation plus
the post-adjustment residual.

Table 8-2
Weighted Mean

System N (meters) σN wN E (meters) σE wE

DGPS 2120373.545 1.5 0.444 3617852.015 .8 1.563

Range
azimuth

2120380.243 1.8 0.309 3617860.323 2.4 0.174

Weighted
mean

N σN E σE

2120376.294 1.2 3617852.847 0.7
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l^ = l + v

l^ = adjusted observation

l = observation

v = residual

a. Functional model. The functional model relates
physical or geometrical conditions to a set of observa-
tions. For example, if a surveyor measures the interior
angles of a five-sided figure, the sum of these angles
should add up to five hundred and forty degrees (540o).
If the correct model is not determined, the adjusted obser-
vations will be in error.

b. Stochastic model. The stochastic model is the
greatest advantage of the least squares procedure. In least
squares adjustment, the surveyor can assign weights,
variances, and covariance information to individual obser-
vations. The traverse balancing techniques and weighted
means do not allow for this variability. Since observa-
tions are affected by various errors, it is essential that the
proper statistical information is applied.

8-6. Observations, Blunders, and Systematic and
Random Errors

a. Observations. Observations in least squares are
the measurements that are to be adjusted. An adjustment
is not warranted if the model is not over-determined
(redundancy = 0). Observations vary due to blunders and
random and systematic errors. When all blunders and
systematic errors are removed from the observations, the
adjustment provides the user an estimate of the “true”
observation.

b. Blunders. Blunders are the result of mistakes by
the user or inadvertent equipment failure. For example,
an observer may misread a level rod by a tenth of a foot
or a malfunctioning data recorder may cause erroneous
data storage. All blunders must be removed before the
least squares adjustment procedure. Blunders can be
identified by scrutinizing the data before they are input in
the adjustment software. Preliminary procedures like loop
closures, traverse balancing, and weighted means are
techniques that can identify blunders before adjustment.

c. Systematic errors. Systematic errors are the
result of physical or mathematical principles. These
errors must be removed before the adjustment procedure.
Systematic errors are reduced or eliminated through care-
ful measurement procedures. For example, when using

DME the user should correct the distance for meteorologi-
cal effects (temperature, pressure, relative humidity).

d. Random errors. Random errors are an unavoid-
able characteristic of the measurement process. The
theories of probability are used to quantify random errors.
The theory of least squares is developed under the
assumption that only random errors exist within the data.
If all systematic errors and blunders have been removed,
the observations will differ only as the result of the ran-
dom errors.

8-7. Variances, Standard Deviations, and Weights

The least squares principle incorporates the functional and
stochastic models. It is essential that the correct a priori
observational weights or variances are computed before
the adjustment process.

a. Variance and standard deviation.The measure of
variability of a set of observations is the sample (s2) or
population variance (σ2). The greater the variance, the
greater the variability of the observations. If a sample of
observations has a variance of zero (s2 = 0), the values of
all observations are equal. Since the population mean (µ)
is seldom known, the sample variance (s2) is computed
utilizing the sample mean (x).

Sample Variance

s2 = [Σ (xi - x)2 ]/ (n - 1)

Population Variance

σ2 = [Σ (xi - µ)2 ]/N

where

s2 = sample variance

σ2 = population variance

xi = observations ( where i = 0 through n )

x = sample mean

µ = population mean

n = number of observations

N = number of elements within the population

x equals: x = (Σ xi)/n

µ equals: µ = (Σ xi)/N
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The sample (s) and population (σ) standard deviation are
the square root of the sample or population variances.
Table 8-3 shows a list of four horizontal angles using a
ten-second (10") theodolite, sample mean (x), sample
variance (s2), standard deviation (s), and observational
weight (w). If the user did not calculate the variance, the
fact that the theodolite was a ten-second (10") instrument
could be used as a standard deviation of the observations.
However, it is advised that the surveyor calculate the
variability (s2) of a set of observations. Computing the
sample variance provides a more accurate representation
of the statistical nature of the observations.

b. Weights. The weight of an observation may be
determined by empirical formulas, intuition, or observa-
tional analysis. The concept of weight is dependent on
the a priori knowledge of the observational variance (σ2

or s2). The greater the observational weight, the greater
the confidence in that observation. The least squares
adjustment technique can accommodate absolute or rela-
tive weighting. Absolute weights are known if the obser-
vational variances have been measured or determined
empirically. Relative weights are derived by intuition.

(1) Absolute weights. Absolute weights are com-
puted empirically or through observational analysis
(Table 8-3). Empirical weights are the result of experi-
mentation or mathematical derivations. For example,
DME or GPS manufacturers provide the user an equip-
ment accuracy based on distance. These empirically
derived values can be utilized to determine the variance or
weight of an observation or set of observations.

Empirical Weights

σ = 5 mm + 2 ppm * distance

mm = millimeters

ppm = parts per million

If a distance of a thousand meters (1000 m) was mea-
sured between two locations, the observational weight
would equal:

ppm = millimeters (mm)/kilometers (km)

1 km = 1,000 m

σ = 5 mm + (2 mm/km) * (1 km)

σ = 7 mm

w = 1/σ2

w = 0.02

(2) Relative weighting. Relative weighting is the
result of intuition. In relative weighting, the user assigns
weights based on past procedures, human factors, or phys-
ical phenomena. In level loop adjustments, relative
weights (w) are considered inversely proportional to the
leveled distance between stations. If the difference in
elevation (deAB = 0.512 m) was measured between sta-
tions A and B and the distance between the two stations
was scaled from a map to be five hundred meters
(500 m), the distance between the two stations could be
used to compute the weight for the difference in elevation
between stations A and B.

Table 8-3
Mean, Variance, Standard Deviation, and Weight

Observations Deg Min Sec

1 142 20 20

2 142 20 30

3 142 20 10

4 142 20 10

Mean (x) 142 20 17.5

Variance(s2) 000 01 31.6

Standard
Deviation(s)

000 01 09.8

Observation Weight (w) w = 1/s2 0.01
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Relative Weights

wAB ≈ 1/dAB

wAB = observational weight

dAB = distance between leveling stations

wAB ≈ 1/(500 m)

wAB ≈ 0.002

8-8. Accuracy and Precision

The terms accuracy and precision are many times consid-
ered synonymous. However, they are unique, and the
surveyor should use great care in how they are used to
define a set of observations or coordinate values.

a. Accuracy. The accuracy of an observation is its
degree of “closeness” to the true value (Figure 8-3). The
RMS error statistic is often used to describe the accuracy
of a set of observations. The RMS is centered about the
true value and the standard deviation (σ) is centered about
the mean value (x). The difference between the RMS and
the standard deviation is the result of a bias between the

measured and true value. This bias may be the result of
systematic errors that were not removed prior to
adjustment.

e = m - t

RMS = (Σe2/n)0.5

where

Σe2 = summation of the observational errors

m = measured value

t = true value

n = number of observations

RMS = root mean square error

b. Precision. The precision of an observation is its
degree of closeness to the mean value (Figure 8-3). The
variance or standard deviation is used to determine the
precision of a set of observations.

Figure 8-3. Precision and accuracy
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8-9. Least Squares Adjustment Techniques

The user can employ various techniques in the adjustment
of data using the least squares principle. The technique
employed is dependent on the adjustment model, com-
putational capability (computer resources), and the
requirement of the survey. The reader should consult an
introductory adjustment text to gain further understanding
of the principles of adjustment theory. To fully under-
stand the procedure of adjustment, a thorough understand-
ing of matrix algebra and differential and integral calculus
is required.

a. Adjustment model. The adjustment model con-
sists of determining the number of observations to be
adjusted (n), the minimum number of observations
required to uniquely determine the functional model (no),
and the redundancy (r). The model is determined by
mathematical or physical relationships. For example, if
the distances between three stations A, B, and C are to be
determined (Figure 8-4a), the minimum number (no) of
observations (distances) to fix the model are two. If the
distance A to B (Figure 8-4b) was measured nine times
and the distance B to C was not measured, the model
could not be determined if the objective was to adjust the
distance between A and C. Therefore, it is not only
important to have redundant observations, but it is critical
to have the correct number of observations to fix the
model (no).

b. Observations only (Av = f).This method is sel-
dom utilized because generalized software packages are
difficult to develop. The method involves creating a
condition or set of conditions that satisfies the functional
model. Figure 8-5 shows a level loop involving three
stations. Table 8-4 includes the differences in elevations
and distances between stations A, B, and C. To perform
a least squares adjustment for this level network, the
adjustment model must be determined (n,no,r). The num-
ber of observations are the difference in elevations
between the points (deab,debc,deca). If one station has a
known elevation, two observations or difference in eleva-
tions are required to fix the adjustment model (no). If two
stations have known elevations, one observation or differ-
ence in elevations is required to fix the adjustment model
(no). In general, the minimum number of observations
required to uniquely determine a level loop equals the
number of stations in the loop minus the number of
known stations. The redundancy for the model equals the
number of observations minus the minimum number of
observations to fix the model (r = n - no). The observa-
tions-only technique involves the use of condition

Figure 8-4. Adjustment model

Figure 8-5. Level loop
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Table 8-4
Level Loop

Known Elevation A = 232.150 m
Adjusted Elevation B = ?
Adjusted Elevation C = ?

From To
Difference in Elevation (DE)
(meters)

Distance
(meters)

A B -10.234 500

B C 2.324 1200

C A 7.821 1000

equations. In this example the elevation of one station
(A) is considered known, the redundancy (r) equals one,
and the condition equation equals the summation of the
elevation differences from A, B, and C (deab + debc + deca

= 0). In the observations-only technique, the number of
condition equation equals the redundancy of the model.

Condition Equation

C = deab + debc + deca = 0

Step 1. Determine the number of observation (n), the
minimum number of observations (no), and the redun-
dancy (r = n - no) that satisfies the functional model.

Adjustment Model

n = 3

no = 2

r = 1

Compute the cofactor matrix (Q) which is the inverse of
the weight matrix. In the level loop example the weight
matrix is derived using the distance between leveling
stations. The weight of each of observation is inversely
proportional to the leveled distance. The dimensions of
the cofactor and weight matrix aren x n (3 x 3).

where

n = number of observations

Q = W-1

Q = cofactor matrix

W = weight matrix

W























1
500

0.0 0.0

0.0 1
1200

0.0

0.0 0.0 1
1000

Q










500 0 0
0 1200 0
0 0 1000

Step 2. Formulate the design matrixA and the
misclosure vectorf. The design matrix and misclosure
vector have dimensions c x n (1 x 3) and c x 1 (1 x 1).

where

c = number of condition equations

n = number of observations

If the condition equations are linear, the elements of the
design matrix (A) equal the coefficients of each observa-
tion in the condition equation. If the condition equations
are nonlinear, they must be linearized using a Taylor
series expansion. The condition equations for the level
loop example are linear. The misclosure vector (f) equals
the negative of the condition equations.

C = deab + debc + deca = 0

A = [ 1 1 1]

f = [-deab - debc - deca]

f = [ 10.234 - 2.324 - 7.821]

f = [ 0.089]
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Step 3. The observational residuals are computed by
the following matrix multiplications.

k = (AQAt)-1f

k = [3.2963E-5]

v = QAtk

v = [ 0.016 0.040 0.033]t

Step 4. The adjusted observations (l^) are computed
by adding the post-adjustment residuals (v) to the meas-
ured observations.

de^ = de + v

dê










10.234
2.324
7.821











0.016
0.040
0.033

dê










10.218
2.364
7.854

The adjusted observations (de^) are utilized to determine if
the condition was satisfied. Computational errors or an
incorrect functional model can cause the adjusted observa-
tions not to satisfy the condition equations.

C = deab + debc + deca = 0

C = -10.218 + 2.364 + 7.854 = 0

Step 5. The estimated elevations of stationsB and C
are computed using the known elevation of stationA and
the adjusted differences in elevation (de^).

Elevation Estimates

B = A + deab

B = 232.150 m + (-10.218 m)

B = 221.932 m

C = A + deac

C = 232.150 m + (-7.854 m)

C = 224.296 m

c. Indirect observations (v + B∆ = f). The indirect
method includes observations and user-defined parame-
ters. Observation equations are developed using

parameters in terms of one observation. This method is
commonly employed by commercial software packages.
Figure 8-6 represents a survey where three ranges (dis-
tances) were measured from known survey control sta-
tions (A, B, and C) to a hydrographic vessel (D). The
unknown position of the vessel was computed using the
method of indirect observations. A minimum of two
ranges (distances) (no = 2) are required to determine the
unknown location of the vessel. The total number of
observations is three (n = 3) and the redundancy of the
system equals one (r = 1). The following steps outline
the method of adjustment using indirect observations.
Table 8-5 contains the observations, standard deviations,
and coordinate information for the problem illustrated in
Figure 8-6.

Figure 8-6. Intersection problem

Step 1. Determine the number of observations (n),
the minimum number of observations (no), and the redun-
dancy (r = n - no) that satisfies the functional model.

Adjustment Model

n = 3

no = 2

r = 1
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Table 8-5
Intersection Example

Station N (meters) E (meters)
Range (R) to Station D
(meters)

Range Standard Deviation
(σR) (meters)

A 2111613.416 3616819.580 8562.825 .500

B 2117118.247 3610160.570 8238.020 .600

C 2120373.830 3617852.048 258.714 0.5

The weight matrix is (w) computed by using the stochas-
tic properties of the measured ranges (σR). The weight is
considered to be inversely proportional to the variance.

W

























1

(σ2)ad

0 0

0 1

(σ2)ad

0

0 0 1

(σ2)ad

W










4.0 0 0
0 3.0 0
0 0 4.0

Step 2. In the method of indirect observations (v +
B∆ = f) the number of condition or observation equations
is equal to the total number of observations (n = 3). The
observation equations (Fn) are developed such that they
satisfy the functional model. The distance equation satis-
fies the functional model for the example in Figure 8-6.

Observation Equations

F1 = RAD - [ (ND - NA)2 + (ED - EA)2 ]0.5 = 0

F2 = RBD - [ (ND - NB)2 + (ED - EB)2 ]0.5 = 0

F3 = RCD - [ (ND - NC)2 + (ED - EC)2 ]0.5 = 0

Each observation equation (F1,F2,F3) must be linearized
with respect to the unknown parameters (ND, ED) using a
Taylor series expansion. The design matrix (B) is com-
prised of the linearized observation equations. The design
matrix has dimensions n x no (3 x 2). The nonlinearity of
the problem requires that initial approximations are com-
puted for the unknown parameters. The initial approxi-
mations (No

D, Eo
D) for the hydrographic vessel were com-

puted from stationsA andB using the technique of range-
range intersection.

No
D = 2,120,115 meters

Eo
D = 3,617,833 meters

Design Matrix

B

























δF1

δND

δF1

δED

δF2

δND

δF2

δEd

δF3

δND

δF3

δED

δF
δND

NA Nd

(ND NA)
2 (ED EA)

2

δF
δED

EA ED

(ND NA)
2 (ED EA)

2

The numerical elements of the design matrix (B) are com-
puted by evaluating the partial derivatives (δFn/δND,
δFn/δED) of the observation equations at the initial approx-
imations (No

D, Eo
D) of the unknown parameters. The

misclosure vector equals the negative of the observation
equations. The misclosure vector (f) has dimensions
n x 1 (3 x 1).

Misclosure Vector

F1 = [ (ND - NA)2 + (ED - EA)2 ]0.5 - RAD

f = F2 = [ (ND - NB)2 + (ED - EB)2 ]0.5 - RBD

F3 = [ (ND - NC)2 + (ED - EC)2 ]0.5 - RCD

B:










.9930 .1184

.3638 .9315

.9973 .0734

f:










.1.053
1.109
0.184

Step 3. The estimates of the unknown parameters
(∆) and the residuals are computed by the following
matrix manipulations. Since the problem is non-linear the
algorithm must be repeated (iterated) until the solution
converges. This example required two iterations to con-
verge. The number of iterations is a function of data
quality, initial approximations, and the functional model.
The condition that the sum of the squares of the residuals
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(vtwv) equals a minimum (φ) is utilized as a convergence
criterion. The parameter vector (∆) has dimensions no

x 1 (2 x 1). In nonlinear problems the parameter vector
must be added to the initial approximations to obtain the
adjusted estimates.

Iteration 1

∆ = (BtWB)-1 * B tWf

∆ :








0.323
1.107

N1
D = No

D + ∆(1,1) = 2,120,115 m + 0.323 m =
2,120,115.323 m

E1
D = Eo

D + ∆(2,1) = 3,617,833 m + 1.107 m =
3,617,834.107 m

v = f - B∆

v:










0.601
0.040
5.87

φ1 = vtWv = 2.83

Iteration 2

B:










.9930 .1185

.3638 .9315

.9976 .0694

f :










0.601
0.04
0.584

∆ :








0.001
0.004

φ2 = 2.81

If | φ1 - φ2|/φ1 0.01 terminate adjustment

(2.83 - 2.81)/2.83 = 0.007

0.007 0.01

Final Adjusted Coordinates of Station D

ND = N1 + ∆(1,1) = 2,120,115.323 + 0.001 =
2,120,115.324 m

ED = E1 + ∆(2,1) = 3,617,834.107 + 0.004 +
3,617,834.111 m

d. General least squares (Av + B∆ = f) . This is the
general case for the observations-only and indirect
method. In some problems, equations that satisfy the
functional model using the observations-only or indirect
observations method may be difficult to develop. In the
general case the condition equations can contain both
parameters and multiple observations. The algorithm for
this technique can be obtained by consulting an introduc-
tory adjustment textbook.

8-10. Error Analysis

After the adjustment procedure, the data are examined for
observational blunders. Blunders and systematic errors
should be identified and removed before the adjustment.
However, erroneous observations are not always recog-
nized before the initial adjustment procedure. To ensure
that the final estimates are “free” of blunders, a blunder
detection scheme should be implemented. The common
blunder detection techniques are the global variance test,
data snooping method, tau test, and robust estimation.
Commercial software packages commonly employ the
global and tau tests for the determination of blunders.

a. Statistical inference. Statistical inference
involves the statement of a hypothesis. Statistical infer-
ence is most commonly utilized to identify observational
blunders within the adjustment. The adjusted data are
tested or compared to determine if the hypothesis is
satisfied.

Hypothesis

Ho: Adjustment estimates are “free” of blunders

Ha Blunders

Four outcomes are possible from hypothesis testing:

(1) Select the null hypothesis (Ho), when the null
hypothesis is true (correct decision).

(2) Select the alternative hypothesis (Ha), when the
alternative hypothesis is true (correct decision).

(3) Select the alternative hypothesis (Ha), when in
fact the null hypothesis (Ho) is true (type I error).
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(4) Select the null hypothesis (Ho), when in fact the
alternative hypothesis (Ha) is true (type II error).

The significance value (α) is dependent on the probability
of committing a type I error. The probability of commit-
ting a type II error (1-β) is the result of accepting the
null hypothesis when in fact the alternative hypothesis is
true. The user must determine which error (type I or
type II) will be the most costly. A significance level that
is very large (α= 0.1) would decrease the confidence level
(1-α). The smaller confidence level could result in the
possible rejection of “good” observations. Therefore, if a
system had limited redundancy, a smaller significance
level may be warranted (α = 0.005).

b. Global variance test. Some software packages
provide the user the opportunity to input a significance
level or probability value. The a posteriori reference
variance is one of the results of adjustment. If the a
priori reference variance is known, the a posteriori vari-
ance is tested to determine if it is consistent with the a
priori variance. The global test is applicable only when
absolute weights were utilized in the adjustment. A two-
tailed or upper tail test is constructed to test the variances.

A Posteriori Reference Variance

σ2 = (vtwv)/r

vt = residual transposed

v = residual

r = redundancy

Two-Tailed Test

Ho : σ2 = σo
2

Ha : σ2 ≠ σo
2

The two-tailed test fails if

Xr
2 X2

α/2,r or Xr
2 X2

1-α/2,r.

Upper Tail Test

Ho : σ2 = σo
2

Ha : σ2 σo
2

The upper tail test fails if Xr
2 X2

α,r

Xr
2 = vtwv/σo

2 = rσ2/σo
2

X2
α,r, X2

α/2,r, X2
1-α/2,r are critical values that are calculated

from the chi square distribution based on a significance
level alpha (α) and redundancy (r).

The failure of the global test suggests the possibility of a
blunder; however, it does not identify the location of the
blunder. Failure of the global test may also be the result
of incorrect weighting or an incorrect adjustment model.
The global test should be used in conjunction with the
data snooping method or robust estimation. If an empiri-
cal method is used to determine the weights, the user
must determine if the computed values are realistic.
Otherwise, the global test may fail due to incorrect a
priori weights. If the global test is rejected, the data
require inspection for blunders or incorrect weighting. If
the a posteriori reference variance passes the global test, it
does not guarantee the absence of blunders within the
adjustment. Therefore, the global test should only be
used in conjunction with another analysis method.

c. Data snooping. The data snooping method
requires the user to know the a priori reference variance.
The method is very effective when only one blunder is in
the network. The technique of data snooping sequentially
tests each standardized residual within the adjustment and
determines if it exceeds a defined rejection threshold.
The standardized residual (v’) is defined as the observa-
tional residual divided by the residual’s standard devia-
tion. The rejection threshold is computed based on a
given significance level (αo) using the Fisher distribution.

Standardized Residual

v’ = v/σv

v’ = standardized residual

σv = (σo) * (qvi)
0.5

σo = a priori reference standard deviation

qvi = the ith diagonal element of the residual
cofactor matrix (Qvv)

Qvv = Q - B(BtWB)-1Bt

Data Snooping Rejection Criteria

|v’| ( F(1-αo),1,oo)0.5

If |v’| 3.29 @ αo = 0.001
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If the standardized residual exceeds the rejection
threshold, it is considered an outlier. The suggested
significance value for the data snooping technique isαo =
0.001. The rejection threshold corresponding to a signifi-
cance value of 0.001 is 3.29. Therefore, the absolute
value of all standardized residuals (v’) that exceed 3.29
are identified as possible blunders. The data snooping
technique is a univariate test that is very effective when
only one blunder is in the network. Therefore, only the
standardized residual with the greatest value that exceeds
the rejection threshold is removed from the observations.
After removal of the possible blunder, the adjustment is
re-computed and the standardized residuals are tested for
additional blunders. The procedure is continued until all
blunders have been removed from the network.

d. Tau test. The tau test is used when the a priori
reference variance is unknown. The tau test utilizes the
tau distribution to compute the critical values. The tau (t)
distribution can be derived from thet (student) distribu-
tion using the following formula:

Tau Distribution

t = [(r)0.5 * tr-1]/[(r-1 + t2
r-1)

0.5]

r = redundancy

t = critical value from thet (student) distribution
based on a significance level (α)

The rejection threshold is computed given a significance
value (α) and the adjustment redundancy (r). The
threshold is compared to the standardized residual. Since
the a priori reference variance is not known, the standard-
ized residual is computed using the a posteriori reference
variance (σ2). If the standardized residual exceeds a
rejection threshold based on the tau distribution, the
observation is flagged as a blunder. The tau rejection
thresholds are interpolated from tables or generated from
computer subroutines. After removal of the blunder, the
adjustment is re-computed and the standardized residuals
are tested for additional blunders. The procedure is con-
tinued until all blunders have been removed from the
network.

Standardized Residual

v’ = v/σ (qvi)
0.5

v’ = standardized residual

σ = a posteriori standard deviation

qvi = residual of the ith cofactor element

Tau Test Rejection Threshold

If v’ t

Both the data snooping technique and tau test require the
computation of the residual cofactor matrix (Qvv). The
determination of the residual cofactor matrix is computa-
tionally time consuming. To alleviate this time ineffi-
ciency, the diagonal components can be computed. This
is only viable when the observational weight matrix is
block diagonal. Another approach is the replacement of
the standard deviation of the residual (σv) with the obser-
vational standard deviation (σl). The residual standard
deviation is smaller than the observational standard
deviation.

|v|/σl |v|/σv

Therefore, an observation with a blunder may not be
flagged as a possible erroneous measurement because the
standardized residual will be smaller. If the observational
standard deviation (σl) is substituted for the residual stan-
dard deviation (σv), it is recommended that the signifi-
cance value (α) be increased. Increasing the significance
value (α) will cause a decrease in the confidence level.

e. Robust estimation.The technique of robust esti-
mation does not depend on the residual cofactor matrix
(Qvv) or the significance value (α). If the a priori refer-
ence variance is known, it is recommended that a global
variance test be performed for the first adjustment itera-
tion. The global test provides additional information on
the presence of blunders or inaccuracies in the adjustment
model or a priori weights. The robust estimation proce-
dure changes the observational weights during each itera-
tion for those observations that exceed a predefined
threshold. The absolute value of the residuals divided by
the observational standard deviations (|v|/σl) are sequen-
tially analyzed to determine if they exceed a rejection
threshold. If the residual exceeds the rejection threshold,
the observational weight is reduced using a decreasing
weight function. In essence, this technique removes
observations with large residuals from the adjustment. The
adjustment is continued until the solution converges.
When the adjustment is completed all blunders should
have been removed. The following decreasing weight
functions are commonly utilized in the technique of robust
estimation.
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Weighting Function 1

All iterations:

wi+1 = wiexp-|vi/σi| if |v| 3

wi+1 = wi if |v| 3

Weighting Function 2

Iteration 1

wi+1 = wi

Iteration 2 & 3

wi+1 = wi(exp[(|vi/σi|)
4.4])0.05 if |v| 3

wi+1 = wi if |v| 3

following iterations:

wi+1 = (exp[-(|vi/σi|
3])0.05

wi = the weight of the ith observation

exp = exponential function

vi = observational residual

σi = observational standard deviation

8-11. Interpretation and Analysis of Adjustment
Results

The interpretation of adjustment results does not require
knowledge of adjustment theory or advanced mathematics.
The following section provides various “thumb rules” that
can be utilized to determine the quality and reliability of
the adjusted data. Although many software routines pro-
vide error analysis or blunder detection options the user
must carefully interpret the results of these techniques.
Data should not be rejected solely on the results provided
by these packages.

a. Input parameters.

(1) Significance level (α). If the adjustment software
provides the flexibility of inputting a significance level
(α) the user should choose a value of 0.05. This value
minimizes the probability of committing a type I and type
II error.

(2) Initial coordinate estimates. Some programs
require the user to input initial coordinate estimates. It is
imperative that these values be realistic. If the initial
estimates are erroneous, the adjustment may not converge
to the correct solution. Techniques like traverse balancing
and the weighted mean should be utilized to determine
initial coordinates.

(3) Data input. All data must be entered in the cor-
rect linear and angular units. Never input one variable
(coordinates) in feet and another variable (distances) in
meters. Most software packages cannot accommodate
mismatched units.

(4) Checking. Before the adjustment is computed,
all field, office, and computer generated input should be
checked by two individuals for blunders. Also, all known
systematic errors should be removed from the data (i.e.,
meteorological data, collimation, and leveling corrections).

b. Output. The majority of the manufacturers’ out-
put the a posteriori reference variance, standardized
residuals, and error ellipse information. Many software
routines have blunder detection schemes that “flag” and
remove observations that are possible blunders. These
techniques of blunder detection are based on statistical
tests like tau or data snooping. The drawback with these
methods is they are many times unreliable. Therefore, the
user must develop a “horse sense” in the determination
and identification of blunders.

(1) Global test. The global test is utilized to deter-
mine blunders. However, if absolute weights were not
used in the adjustment the results of the test are
meaningless.

(2) Standardized residuals. The standardized residu-
als are an excellent indicator in determining blunders.
After all blunders have been identified and removed using
the manufacturers’ software the output should be exam-
ined for additional blunders that were not located.

(3) Error ellipse.

f. Error ellipse. The error ellipse provides a repre-
sentation of the precision of the adjusted parameters and
observations. The error ellipse consists of semimajor (a)
and semiminor axes (b). The semimajor (a) and semi-
minor (b) axes are precision estimates (σ) of the adjusted
parameters. The error ellipse can be utilized to determine
the absolute or relative precision of parameters.
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8-12. Contract Monitoring

a. Recommendations.Contracts involving surveys
that are small in areal extent and require low accuracy
survey control (1:5,000) may not warrant a least squares
adjustment. In general, Fourth-Order surveys (1:5,000) do
not warrant adjustment. A compass rule adjustment or
observational mean will suffice. All control surveys that
are to be incorporated into the NGRS shall be performed
and adjusted using the guidelines established by the NGS.

b. Required submittal documents.The contracting
officer should require the contractor to supply the final
adjustment for each project. The contractor should be
required to supply a list containing any observations that
were removed due to blunders. The contractor must
provide the Corps with a detailed analysis explaining the
methodology performed in the adjustment, assumptions,
and possible error sources.
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